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Modularity of special cycles on unitary Shimura varieties
over CM-fields
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Yota Maeda (Kyoto)

1. Introduction. Hirzebruch–Zagier [4] observed that the intersection
number of special divisors on Hilbert modular surfaces generates a certain
weight 2 elliptic modular form. Kudla–Millson generalized this work in [8],
and they proved that special cycles on orthogonal (resp. unitary) Shimura
varieties generate Siegel (resp. Hermitian) modular forms with coefficients
in the cohomology group. Yuan–Zhang–Zhang [12] and Zhang [13] treated
this problem in the Chow group in the case of orthogonal Shimura varieties
and proved the modularity under a convergence assumption. Bruinier–Raum
[3] showed the convergence. Kudla [7] and the author [10] generalized this
problem to a certain orthogonal Shimura variety under the Beilinson–Bloch
conjecture.

In this paper, we shall deal with the unitary case in the Chow group. Our
problem is Conjecture 1.4. We give two solutions to this problem (Corollary
1.6 and Theorem 1.7). First, we prove Conjecture 1.4 for e = 1 uncondi-
tionally by using Bruinier’s result [2]. On the other hand, for e = 1, Liu
[9] solved Conjecture 1.4, i.e., proved the modularity of special cycles on
unitary Shimura varieties in the Chow group, assuming the absolute conver-
gence of the generating series. Recently, Xia [11] showed the modularity and
absolute convergence of the generating series for e = 1. Our result in this
paper gives another proof of Liu’s result [9, Theorem 3.5]. For e = 1 and
r = 1, the modularity of special divisors is proved in Theorem 1.5. To treat
higher-codimensional cycles, we adopt the induction method [12]. Second,
for e > 1, we show Conjecture 1.4 under the Beilinson–Bloch conjecture for
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orthogonal Shimura varieties. We reduce the problem to the orthogonal case
([7] and [10]), so we also need the Beilinson–Bloch conjecture for orthogonal
Shimura varieties. We remark that we do not prove the absolute convergence
of the generating series in this paper.

Before giving the statement of our results, we shall define some Shimura
varieties.

1.1. Unitary Shimura varieties. Let d, e, and n be positive integers
such that e < d. Let F be a totally real field of degree d with real embeddings
σ1, . . . , σd and E be a CM extension of F . We write ∂F for the different ideal
of F . Let (VE , ⟨ , ⟩) be a non-degenerate Hermitian space of dimension n+1
over E whose signature is (n, 1) at σ1, . . . , σe and (n+ 1, 0) at σe+1, . . . , σd.

For i = 1, . . . , e, let VE,σi,C := VE ⊗F,σi C and DE
i ⊂ P(VE,σi,C) be the

Hermitian symmetric domain defined as

DE
i := {v ∈ VE,σi,C\{0} | ⟨v, v⟩ > 0}/C×.

We use
DE := DE

1 × · · · ×DE
e .

Let U(VE) be the unitary group of VE over F , which is a reductive group
over F . We put G := ResF/QU(VE) and consider the Shimura varieties
associated with the Shimura datum (G,DE). Then, for any open compact
subgroup KG

f ⊂ G(Af ), the Shimura datum (G,DE) gives a Shimura variety
MKG

f
over C, whose C-valued points are given by

MKG
f
(C) = G(Q)\(DE ×G(Af ))/K

G
f .

Here, Af is the ring of finite adèles of Q. We remark thatMKG
f

has a canonical
model over a number field called the reflex field. Hence MKG

f
is canonically

defined over Q, an algebraic closure of Q embedded in C. By abuse of nota-
tion, in this paper, the canonical model of MKG

f
over Q is also denoted by

MKG
f

. Then the Shimura variety MKG
f

is a projective variety over Q since

0 < d − e. It is a smooth variety over Q if KG
f is sufficiently small. In this

paper, we assume that KG
f is sufficiently small.

1.2. Orthogonal Shimura varieties. We define VF := VE , consid-
ered as an F -vector space, and ( , ) := TrE/F ⟨ , ⟩. Then (VF , ( , )) is a
quadratic space of dimension 2n + 2 over F whose signature is (2n, 2) at
σ1, . . . , σe and (2n + 2, 0) at σe+1, . . . , σd. We define DF similarly. We put
H := ResF/QGSpin(VF ) and define NKH

f
similarly for an open compact

subgroup KH
f ⊂ H(Af ). Let L ⊂ VF be a lattice, and L′ the dual lattice.

Now, we have a group embedding, G ↪→ H. From here on, we assume that
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KG
f = H(Af ) ∩KH

f so that

ι : MKG
f
↪→ NKH

f
.(1.1)

In this paper, we also assume that KH
f is sufficiently small.

1.3. Special cycles on Shimura varieties. We shall define special
cycles on unitary Shimura varieties. For i = 1, . . . , e, let Li ∈ Pic(DE

i ) be
the line bundle which is the restriction of OP(VEi,σi,C)

(−1) to DE
i . By pulling

back to DE , we get p∗iLi ∈ Pic(DE), where pi : DE → DE
i are the projection

maps. These line bundles descend to LKf ,i ∈ Pic(MKG
f
)⊗Z Q, and thus we

obtain L := LKG
f ,1 ⊗ · · · ⊗ LKG

f ,e on MKG
f

.
We shall define special cycles following Kudla [6], [7]. Let W ⊂ VE be

a totally positive subspace over E. We denote GW := ResF/QU(W⊥). Let
DW,E := DE

W,1 × · · · ×DE
W,e be the Hermitian symmetric domain associated

with GW , where

DE
W,i := {w ∈ DE

i | ∀v ∈Wσi , ⟨v, w⟩ = 0} (1 ≤ i ≤ e).

Then we have an embedding of Shimura data (GW , DW,E) ↪→ (G,DE). For
any open compact subgroup KG

f ⊂ G(Af ) and g ∈ G(Af ), we have an
associated Shimura variety MgKG

f g−1,W over C:

MgKG
f g−1,W (C) = GW (Q)\(DW,E ×GW (Af ))/(gK

G
f g

−1 ∩GW (Af )).

Assume that KG
f is neat so that the morphism

MgKG
f g−1,W (C) →MKG

f
(C), [τ, h] 7→ [τ, hg],

is a closed embedding [7, Lemma 4.3]. Let ZG(W, g)KG
f

be the image of this

morphism. We consider ZG(W, g)KG
f

to be an algebraic cycle of codimension

e dimF W on MKG
f

defined over Q.
For any positive integer r and x = (x1, . . . , xr) ∈ V r

E , let U(x) be the
E-subspace of VE spanned by x1, . . . , xr. We define the special cycle in the
Chow group

ZG(x, g)KG
f
∈ CHer(MKG

f
)C := CHer(MKG

f
)⊗Z C

by

ZG(x, g)KG
f
:= ZG(U(x), g)KG

f
(c1(L

∨
KG

f ,1
) · · · c1(L ∨

KG
f ,e

))r−dimU(x)

if U(x) is totally positive. Otherwise, we put ZG(x, g)KG
f
:= 0.

For a Bruhat–Schwartz function ϕf ∈ S(VE(Af )
r)K

G
f that is KG

f -invari-
ant, Kudla’s generating function is defined to be the following formal power
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series with coefficients in CHer(MKG
f
)C in the variable τ = (τ1, . . . , τd) ∈

(Hr)
d:

ZG
ϕf
(τ) :=

∑
x∈G(Q)\V r

E

∑
g∈Gx(Af )\G(Af )/K

G
f

ϕf (g
−1x)ZG(x, g)KG

f
qT (x).

Here, Gx ⊂ G is the stabilizer of x, Hr is the Siegel upper half-plane of
genus r, T (x) is the moment matrix 1

2((xi, xj))i,j , and

qT (x) := exp
(
2π

√
−1

d∑
i=1

Tr τiσiT (x)
)
.

For a C-linear map ℓ : CHer(MKG
f
)C → C, we put

ℓ(ZG
ϕf
)(τ) :=

∑
x∈G(Q)\V r

E

∑
g∈Gx(Af )\G(Af )/K

G
f

ϕf (g
−1x)ℓ(ZG(x, g)KG

f
)qT (x),

which is a formal power series with complex coefficients in the variable τ ∈
(Hr)

d. We define ZH
ϕf
(τ) similarly.

Remark 1.1. We explain that ZH
ϕf
(τ) is an analogue of a theta function.

For a totally real definite matrix β ∈Mr(F ), let Ωβ := {x ∈ V r
F | T (x) = β},

and we consider the Fourier expansion with respect to β. Now we choose β
such that Ωβ ̸= ∅ and fix x0 ∈ Ωβ(F ). For ξj ∈ H(Af ), we have

Supp(ϕf ) ∩Ωβ(Af ) =
ℓ∐

j=1

KH
f · ξj · x0,

and we put

ZH(β, ϕf )KH
f

:=

ℓ∑
j=1

ϕf (ξ
−1
j · x0)ZH(x0, ξj)KH

f
.

Then ZH
ϕf
(τ) becomes

ZH
ϕf
(τ) =

∑
β≥0

ZH(β, ϕf )KH
f
qβ

and by adding Kudla–Millson forms and Gaussian functions, this is exactly
a theta function in the cohomology group. For details, see [6].

Before stating our goal, we have to clarify the notion of “modular”.

Definition 1.2. Let V be a vector space over C and f be a formal power
series with coefficients in V . We say f is modular if for any C-linear map
ℓ : V → C such that ℓ(f) is absolutely convergent, ℓ(f) is modular.
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1.4. The Beilinson–Bloch conjecture. To state the main theorem
for e > 1, we have to introduce the Beilinson–Bloch conjecture because we
need modularity for the orthogonal case, and this was proved under the
Beilinson–Bloch conjecture in [7] and [10].

Let X be a smooth variety over Q and

clm : CHm(X) → H2m(X,Q) := H2m(X(C),Q)

be the mth cycle map. On the other hand, we have the mth intermediate
Jacobian J2m−1(X) of X defined by the Hodge structure of X (see before
[10, Conjecture 1.2]). Then there exists the mth higher Abel–Jacobi map

AJm : Ker(clm)⊗Q → J2m−1(X)⊗Q.
The Beilinson–Bloch conjecture claims that AJm is injective. Consequently,
if H2m−1(X,Q) = 0, then under the Beilinson–Bloch conjecture for m, the
map

clmQ : CHm(X)⊗Q → H2m(X,Q) := H2m(X(C),Q)

is injective. See [10] for the detailed claim of the Beilinson–Bloch conjecture.

Remark 1.3. For the rest of this paper, “the Beilinson–Bloch conjecture
for m” means that clmQ is injective if H2m−1(X,Q) = 0. We will assume this
conjecture for orthogonal Shimura varieties because the modularity of the
generating series for them (see [7] or [10]), in the Chow groups used the
result by Kudla–Milson [8], which asserts the modularity of the generating
series in the cohomology group. Namely, Kudla and the author obtained
the modularity with the Chow group coefficients under the Beilinson–Bloch
conjecture. We will deduce the modularity for unitary Shimura varieties from
their results.

1.5. Main results. For notations, see Subsections 1.2 and 1.3. In the
context of Kudla’s modularity conjecture, our problem is as follows.

Conjecture 1.4. The generating series ZG
ϕf
(τ) is a Hilbert-Hermitian

modular form of weight n+ 1 and genus r.

We give two partial solutions to this problem: Corollary 1.6 and Theo-
rem 1.7.

First, we can prove the modularity of the generating series of special
divisors by using the regularized theta lift on orthogonal groups.

Theorem 1.5 (Theorem 3.1). Assume that e = 1 and r = 1. Then
ZG
ϕf
(τ) is a Hilbert-Hermitian modular form for SU(1, 1) of weight n + 1

under the assumption that the series converges absolutely.

Theorem 1.5 generalizes [5, Theorem 10.1]. We can prove a stronger result
by induction on r [12]; see Corollary 1.6. It does not follow immediately
from [5] or Theorem 1.5 that ZG

ϕf
(τ) is a Hilbert-Hermitian modular form
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for U(1, 1), i.e., Theorem 1.5 shows only the SU(1, 1)-modularity of ZG
ϕf
(τ).

However, we can show the U(1, 1)-modularity of ZG
ϕf
(τ) by proving termwise

modularity. This means that we can show the modularity of ZG
ϕf
(τ) for the

parabolic subgroup P1 and a specific element w1 defined in Section 3. On the
other hand, P1 and w1 generate U(1, 1), and we already know the modularity
for w1 ∈ SU(1, 1) from Theorem 1.5, so the problem reduces to proving the
modularity for P1. For the proof of modularity for P1, see [9], [10], and [12].
By combining the above modularity and induction on r, we can prove the
modularity of special cycles of a higher codimension.

Corollary 1.6 (Corollary 3.2). Assume that e = 1. Then ZG
ϕf
(τ) is a

Hilbert-Hermitian modular form for U(r, r) of weight n + 1 under the as-
sumption that the series converges absolutely.

This gives another proof of Theorem 1.7 for e = 1 and of [9, Theorem
3.5]. This is shown unconditionally, unlike Theorem 1.7.

Now, we state the theorem for e > 1. Recall that G := ResF/QU(VE)
is the unitary group associated with a Hermitian space VE over a CM field
E, and for a Bruhat–Schwartz function ϕf ∈ S(VE(Af )

r)K
G
f , our generating

series ZG
ϕf
(τ) is defined as follows with coefficients in CHer(MKG

f
)C in the

variable τ = (τ1, . . . , τd) ∈ (Hr)
d:

ZG
ϕf
(τ) :=

∑
x∈G(Q)\V r

E

∑
g∈Gx(Af )\G(Af )/K

G
f

ϕf (g
−1x)ZG(x, g)KG

f
qT (x).

Our main result in this paper is as follows.

Theorem 1.7 (Theorem 4.1). ZG
ϕf
(τ) is a Hilbert-Hermitian modular

form for U(r, r) of weight n + 1 under the Beilinson–Bloch conjecture for
m = e with respect to orthogonal Shimura varieties and under the assumption
that the series converges absolutely for e > 1.

Remark 1.8. We assume the Beilinson–Bloch conjecture for m = e for
NKH

f
when 2n ≥ 3, i.e., n > 1. When n = 1, we need to assume the

Beilinson–Bloch conjecture form = e for a larger orthogonal Shimura variety
N ′

KH
f

including NKH
f

; see [10, Theorem 1.6]. For the precise statement of the

Beilinson–Bloch conjecture, see [10, Section 1.2].

Remark 1.9. Kudla [7] and the author [10] proved the modularity of
the generating series associated with orthogonal Shimura varieties for e > 1.
These results are shown by using Kudla–Millson’s cohomological coefficients
result [8] and reducing the problem to this cohomological case under the
Beilinson–Bloch conjecture for orthogonal Shimura varieties. Therefore one
might think that the modularity of the generating series associated with
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unitary Shimura varieties could also be proved in the same way, but the
Hodge numbers appearing in the cohomology of unitary Shimura varieties
do not seem to vanish [7, Remark 1.2].

Historically, for unitary Shimura varieties, Kudla–Millson [8] studied the
cohomological coefficients case. In the Chow group, Hofmann [5] showed the
SL2(∼= SU(1, 1))-modularity of the generating series over imaginary quad-
ratic fields for r = 1, e = 1, and Liu [9] showed Hermitian modularity for e =
1, assuming the absolute convergence of the generating series. We generalize
their work. On the other hand, Xia [11] showed Liu’s result without assuming
the absolute convergence of the generating series. He uses the formal Fourier–
Jacobi series method similar to the work over Q of Bruinier–Westerholt–
Raum [3].

Theorem 1.5 and Corollary 1.6 are included in Theorem 1.7 under the
Beilinson–Bloch conjecture, but we give another proof working only for
r = 1, using regularized theta lifts.

We can also restate the result using Kudla’s modularity conjecture for
orthogonal Shimura varieties as follows.

Corollary 1.10. ZG
ϕf
(τ) is a Hilbert-Hermitian modular form for U(r, r)

of weight n + 1, assuming the modularity of the generating series of special
cycles on orthogonal Shimura varieties for r = 1 and absolute convergence
of the series ZG

ϕf
(τ) for e > 1.

We explain in Section 4.4 why we only assume the modularity for r = 1
on orthogonal Shimura varieties.

1.6. Outline of the proof of Theorems 1.5 and 1.7. As an appli-
cation of the modularity of special cycles on orthogonal Shimura varieties
proved by using regularized theta lifts, we can prove Theorem 1.5 and Corol-
lary 1.6. This is another proof of [9, Theorem 3.5] for the special divisors
case. Theorem 1.7 can be reduced to the orthogonal case (see [7] and [10]),
so we have to assume the Beilinson–Bloch conjecture for orthogonal Shimura
varieties, and this is our solution to Conjecture 1.4.

1.7. Outline of this paper. In Section 2, we review the modularity
of the generating series of special cycles on orthogonal Shimura varieties.
In Section 3, we prove modularity for e = 1. In Section 4, we establish the
Hermitian modularity of special cycles for e > 1 under the Beilinson–Bloch
conjecture for orthogonal Shimura varieties.

2. Modularity on orthogonal groups. In this section, we shall re-
call Bruinier’s work [2]. He constructed regularized theta lifts on orthogonal
groups and showed the modularity of special cycles on orthogonal Shimura
varieties.
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Throughout this section, let L ⊂ VF be an even OF -lattice and L′ be
the Z-dual lattice of L with respect to TrF/Q( , ). Let Ẑ :=

∏
p<∞ Zp,

and we define L̂ := L ⊗ Ẑ. We have L′/L ∼= L̂′/L̂, so for µ ∈ L′/L, let
1µ ∈ S(VF (AF,f )) be the characteristic function associated with µ + L̂. In
the current section, we assume that r = 1 and n > 2.

2.1. Regularized theta lifts on orthogonal groups. We review the
results of [2]. Let

k := (k1, k2, . . . , kd) = (1− n, 1 + n, . . . , 1 + n) ∈ Zd

and s0 := 1− k1 = n. We call k a weight and define the dual weight κ to be

κ := (2− k1, k2 . . . , kd) = (1 + n, 1 + n, . . . , 1 + n) ∈ Zd.

We use Kummer’s confluent hypergeometric function

M(a, b, z) :=
∞∑
n=0

(a)nz
n

(b)nn!
, (a)n :=

Γ (a+ n)

Γ (a)
,

for a, b, z ∈ C, and Whittaker functions

Mν,t(z) := e−z/2z1/2+tM(1/2 + t− ν, 1 + 2t, z) (t, ν ∈ C),

Ms(v1) := |v1|−k1/2Msgn(v1)k1/2,s/2(|v1|)e
−v1/2 (s ∈ C, v1 ∈ R).

Now, we define the Whittaker forms

fm,µ(τ, s) := C(m, k, s)Ms(−4πm1v1) exp(−2π
√
−1Tr(mτ))1µ

(mi := σi(m)),

where µ ∈ L′/L ∼= L̂′/L̂ and 1µ is the characteristic function associated with
µ+ L̂. Here, C(m, k, s) is a normalizing factor,

C(m, k, s) :=
(4πm2)

k2−1 · · · (4πmd)
kd−1

Γ (s+ 1)Γ (k2 − 1) · · ·Γ (kd − 1)
.

We define, for τ ∈ (H1)
d, the function

fm,µ(τ) := fm,µ(τ, s0)

= C(m, k, s0)Γ (2− k1)

(
1− Γ (1− k1, 4πm1v1)

Γ (1− k1)

)
· e4πm1v1 exp(−2π

√
−1Tr(mτ))1µ.

For m ∈ F , m ≫ 0 means mi := σi(m) > 0 for all i, and ∂F denotes
the different ideal of a totally real field F . Note that we consider a finite
OF -module L′/L equipped with a quadratic form ( , )/2 which takes values
in F/∂−1OF since we assume that L is even.
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Definition 2.1. A Whittaker form of weight k is a finite linear combi-
nation of the functions fm,µ(τ, s) for µ ∈ L′/L,m ∈ (µ, µ)/2 + ∂−1OF and
m ≫ 0. A harmonic Whittaker form of weight k is a Whittaker form with
s = s0, i.e., a function of the form∑

µ∈L′/L

∑
m≫0

c(m,µ)fm,µ(τ)

for c(m,µ) ∈ C. Here, the second sum runs m ∈ (µ, µ)/2+∂−1OF . Let Hk,ρL

be the C-vector space consisting of harmonic Whittaker forms of weight k.

Note that in the above definition, the weight k is used in the definition
of the normalizing factor C(m, k, s) and s0 := 1− k1.

Remark 2.2. Here, ρL is a lattice model of the Weil representation of the
metaplectic group Mp2(ÔF ), and fm,µ satisfies a certain modularity condi-
tion on ρL and a certain differential equation. For details, see [2, Chapter 4].

Under our assumption on n > 2 and κj ≥ 2 for all j, there is a surjective
map ξk : Hk,ρL → Sκ,ρL [2, Proposition 4.3]. Here, Sκ,ρL is the space of
Hilbert modular forms of weight κ and type ρL. Let M !

k,ρL
be the kernel of

this map, and we call elements of this space weakly holomorphic Whittaker
forms of weight k. Hence, there is an exact sequence

0 →M !
k,ρL

→ Hk,ρL
ξk−→ Sκ,ρL → 0.

This exact sequence and the following are analogues of classical ones. See
Borcherds [1]. This pairing is non-degenerate, so a non-degenerate pairing is
induced between Hk,ρL/M

!
k,ρL

and Sk,ρL , defined by

{g, f} := (g, ξk(f))Pet

for the Petersson inner product on Sk,ρL . We recall an explicit formula for
the pairing { , }.

Proposition 2.3 ([2, Proposition 4.5]). For g ∈ Sκ,ρL and f ∈ Hk,ρL

with Fourier expansions

g =
∑

ν∈L′/L

∑
n>>0

b(n, ν) exp(2π
√
−1Tr(nτ))1ν ,

f =
∑

µ∈L′/L

∑
m>>0

c(m,µ)fm,µ(τ),

we have
{g, f} =

∑
µ∈L′/L

∑
m>>0

c(m,µ)b(m,µ).

We remark that Whittaker forms are analogues of Maass forms; see [2,
Section 4.1].
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For f =
∑

µ

∑
m c(m,µ)fm,µ(τ) ∈ Hk,ρL , we define

Z(f) :=
∑
µ

∑
m

c(m,µ)ZH(m,µ)KH
f
.

Let I := ResF/Q SL2 and χV be a quadratic character of A×
F /F

× associated
with V , given by

χV (x) := (x, (−1)ℓ(ℓ−1)/2 det(V ))F (ℓ := 2n+ 2).

We review the definition of Eisenstein series [2, Section 6.2]. Let Q ⊂ H
be the parabolic subgroup consisting of upper triangular matrices, and let
s ∈ C. We take a standard section Φ ∈ I(s, χ) := IndHQ χV | · |s. Then we have
the Eisenstein series

E(g, s, Φ) :=
∑

γ∈I(F )\H(F )

Φ(γg),

E(τ, s, ℓ;Φf ) := v−ℓ/2E(gτ , s, Φf ⊗ Φℓ
∞),

where gτ ∈ Mp2(R)d satisfies gτ (
√
−1, . . . ,

√
−1) = τ ∈ H d, and Φℓ

∞ is de-
fined in [2, Chapter 6]. Let 1µ ∈ S(VF (AF,f )) be the characteristic function
associated with µ + L̂ for µ ∈ L′/L ∼= L̂′/L̂. Here, the Weil representa-
tion gives an intertwining operator between the space of Bruhat–Schwartz
functions and the space of standard sections at s = s0:

λ = λ⊗ λf : S(V (AF )) → I(s0, χV ).

We obtain a vector valued Eisenstein series of weight ℓ with respect to ρL
by taking

EL(τ, s, ℓ) :=
∑

µ∈L′/L

E(τ, s, ℓ;λf (1µ))1µ.

We get the Fourier expansion of the Eisenstein series at ∞:

EL(τ, κ) := EL(τ, s0, κ) = 10 +
∑

µ∈L′/L

∑
m>>0

B(m,µ) exp(2π
√
−1Tr(mτ))1µ.

We define
B(f) :=

∑
µ∈L′/L

∑
m>>0

c(m,µ)B(m,µ)

for a harmonic Whittaker form f =
∑

µ

∑
m c(m,µ)fm,µ. Note that

B(f) = {EL(τ, κ), f}.

The following theorem is the regularized theta lift over totally real fields,
proved by Bruinier [2, Theorem 1.3].
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Theorem 2.4 ([2, Theorem 6.8]). Let f ∈ M !
k,ρL

be a weakly holomor-
phic Whittaker form of weight k for Γ = SL2(OF ) ⊂ I(R) = ResF/Q SL2(R)
whose coefficients c(m,µ) are integral. Then there exists a meromorphic mod-
ular form Ψf (τ, g) for H(Q) of level KH

f such that

(1) the weight of Ψ is −B(f),
(2) divΨ = Z(f).

2.2. Modularity of special divisors on orthogonal groups. Now,
we review the modularity of special divisors on orthogonal Shimura varieties.
To state the theorem, we need to prepare the generating series for orthogonal
Shimura varieties. From [2], recall that for x0 taken in Remark 1.1 and for
a totally real element m = ⟨x0, x0⟩/2 ≫ 0 in F , we define

ZH(m,ϕf )KH
f

:=
∑

h∈Hx0\H(AF,f )/K
H
f

ϕf (h
−1x0)Z

H(x0, h),

and

A0(τ) :=
∑

µ∈L′/L

−c1(L )1µ

+
∑

µ∈L′/L

∑
m≫0

(
ZH(m, 1µ)KH

f
+B(m,µ)c1(L )

)
qm1µ,

A(τ, ϕf ) :=− c1(L ) +
∑

m>>0

ZH(m,ϕf )KH
f
qm,

A(τ) :=
∑
µ

A(τ, 1µ)1µ

=
∑

µ∈L′/L

−c1(L )1µ +
∑

µ∈L′/L

∑
m>>0

ZH(m, 1µ)KH
f
qm1µ.

Note that since r = 1, x0 is an element of VF , so that the phrase “m is totally
real” makes sense and corresponds to β ≥ 0 in Remark 1.1.

We want to show the modularity of Zϕf
(τ), but first we will prove the

modularity of A0(τ) (see Remark 2.6). We remark that A(τ, ϕf ) = ZH
ϕf
(τ).

The following theorem was proved by Bruinier [2].

Theorem 2.5 ([2, Theorem 7.1, Proposition 7.3]). For any n > 0,

A0(τ) ∈ Sκ,ρL ⊗ CH1(NKH
f
).

Remark 2.6. We know

A0(τ) = A(τ) + c1(L )EL(τ, κ)

by [2, Remark 6.5]. Combining this with Theorem 2.5, we also get

A(τ) ∈ Sκ,ρL ⊗ CH1(NKH
f
).
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3. Modularity of special cycles on unitary groups for e = 1.

3.1. Divisors case

Theorem 3.1. Assume that e = 1 and r = 1. Then ZG
ϕf
(τ) is a Hilbert-

Hermitian modular form for SU(1, 1) of weight n+ 1 under the assumption
that the series converges absolutely.

Proof. First, we show the modularity of ZH
ϕf
(τ). Since, ϕf is a locally con-

stant, compactly supported function, we can write it as ϕf =
∑

µ∈L′/L eµ1µ
for some eµ ∈ C and µ ∈ L′/L. Recall that

SL :=
⊕

µ∈L′/L

C1µ ⊂ S(V (AF,f )),

so that we define

δ : SL → C,
∑

µ∈L′/L

cµ1µ 7→
∑

µ∈L′/L

cµeµ.

Then we have

δ : SL ⊗CH1(NKH
f
)C[[q]] ⊃ Sκ,ρL ⊗CH1(NKH

f
)C[[q]] → CH1(NKH

f
)C[[q]],∑

µ∈L′/L

∑
m

b(m,µ)1µ ⊗ Zm,µq
m 7→

∑
µ∈L′/L

∑
m

b(m,µ)eµZm,µq
m,

where
∑

µ∈L′/L

∑
m b(m,µ)1µq

m ∈ Sκ,ρL and Zm,µ ∈ CH1(NKH
f
)C. Note

that we consider these two spaces as formally defined, without assuming
absolute convergence. Then δ(A(τ)) = ZH

ϕf
(τ), because from the definition

of the generating series and Remark 1.1,

ZH
ϕf
(τ) =

∑
m>>0

ZH(m,ϕf )KH
f
qm,

where qm := exp(2π
√
−1Tr(mτ)) Hence, this is formally modular in the

sense of Definition 1.2 in view of Theorem 2.5 and Remark 2.6. See also [2,
Section 2.3].

On the other hand, by [9, Corollary 3.4], we have ι⋆ZH
ϕf
(τ) = ZG

ϕf
(τ).

Therefore, by the modularity of ZH
ϕf
(τ), the generating series ZG

ϕf
(τ) is a

Hilbert-Hermitian modular form for SU(1, 1) under the assumption that the
series converges absolutely. Since the weight of ZH

ϕf
(τ) is n+ 1, this finishes

the proof.

This gives a proof of Theorem 1.5. Note that to prove the modularity of
ZG
ϕf
(τ) for n > 1, we use the perfect pairing presented in Proposition 2.3.

For n = 1, we use an embedding trick. For more details, see [2] or [10].
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3.2. General r case. To show Hermitian modularity, we reduce the
problem to the generators of the associated unitary group. Now, the indefi-
nite unitary group U(r, r) is generated by the parabolic subgroup Pr(F ) =
Mr(F )Nr(F ) and wr,r−1, where

Mr(F ) :=

{
m(a) =

(
a 0

0 ta−1

) ∣∣∣∣ a ∈ GLr(E)

}
,

Nr(F ) :=

{
n(u) =

(
1r u

0 1r

) ∣∣∣∣ u ∈ Herr(E)

}
,

wr,r−1 :=


1r−1 0 0r−1 0

0 0 0 1

0r−1 0 1r−1 0

0 −1 0 0

 .

See [9, proof of Theorem 3.5]. We put w1 := w1,0. By induction on r, we get
the following result.

Corollary 3.2. Assume e = 1. Then ZG
ϕf
(τ) is a Hilbert-Hermitian

modular form for U(r, r) of weight n + 1 provided that the series converges
absolutely.

Proof. To prove that ZG
ϕf
(τ) is a Hilbert-Hermitian modular form for

r = 1, we note that we already know the modularity for SU(1, 1) from
Theorem 3.1. Therefore, in particular, we know the modularity for w1 ∈
SU(1, 1). Hence, it suffices to prove the modularity for the parabolic subgroup
P1 ⊂ U(1, 1) because U(1, 1) is generated by P1 and w1 = w1,0. We can prove
the invariance under P1 in the same way as in [9] or [10]. This finishes the
proof of the corollary for r = 1. For r > 1, we use induction on r. More
specifically, for any r, we can prove the modularity for Pr, i.e.,

ωf (n(u)fg
′
f )(ϕf ⊗ φd

+)(x)Z
G(x)KG

f
= ωf (g

′
f )(ϕf ⊗ φd

+)(x)Z
G(x)KG

f
,

ωf (m(a)fg
′
f )(ϕf ⊗ φd

+)(x)Z
G(x)KG

f
= ωf (g

′
f )(ϕf ⊗ φd

+)(x)Z
G(x)KG

f
,

for any u ∈ Herr(F ) and a ∈ GLr(F ). This will also be done in more detail
in Section 4.2. By using the modularity for w1 and r = 1, we can prove
the modularity for wr,r−1 when r > 1 in the same way as in Section 4.3,
and we already know the w1-modularity. We will show the induction step in
Section 4.3.

This shows the modularity of special cycles on a unitary Shimura vari-
ety for e = 1 (Theorem 1.6) and gives another proof of Liu’s theorem [9,
Theorem 3.5].
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4. General e case

4.1. Weil representations. Let ψ : E\AE → C× be the composite of
the trace map E\AE → Q\A and the usual additive character

Q\A → C×, (xv)v 7→ exp
(
2π

√
−1

(
x∞ −

∑
v<∞

xv

))
,

where xv is the class of xv in Qp/Zp.
Let (W, ( , )) be a Hermitian space of dimension 2r over E whose signa-

ture is (r, r) so that U(W ) = U(r, r). Then we get a symplectic vector space
W := ResE/F (VE ⊗EW ) with the skew-symmetric form TrE/F (⟨ , ⟩⊗ ( , )).
Let Sp(W ) be the symplectic group and Mp(W ) be its metaplectic C× cov-
ering group. Then we get the Weil representations ωf and ωA, the actions of
Mp(W )(Af ) on S(V (AF,f )

r) and Mp(W )(A) on S(V (AF )
r).

Now, we state the second solution to Conjecture 1.4.

Theorem 4.1. Assuming absolute convergence for e > 1, ZG
ϕf
(τ) is

a Hilbert-Hermitian modular form for U(r, r) of weight n + 1 under the
Beilinson–Bloch conjecture for orthogonal Shimura varieties for m = e pro-
vided that the series in the orthogonal case converges absolutely.

We reduce Theorem 4.1 to the orthogonal case, so we have to assume the
Beilinson–Bloch conjecture for orthogonal Shimura varieties. The strategy is
as follows. For general e, we can prove the modularity for Pr for any r by
direct calculation. We can also show the modularity for wr,r−1 when r > 1,
assuming the modularity for w1 = w1,0 and r = 1. Hence, the problem
is the modularity for w1 for r = 1 and general e. We treat this problem
by embedding unitary Shimura varieties into orthogonal varieties, studied
in [5]. In the orthogonal cases, the modularity of the generating series is
proved by [7] or [10] under the Beilinson–Bloch conjecture. We remark that
when e = 1, the modularity for w1 is solved by Corollary 3.2, followed by
the modularity for SU(1, 1) using the regularized theta lifts. For the precise
statement of the Beilinson–Bloch conjecture, see [10, Section 1.2].

From [12], we get the following expression for the generating series for
the unitary group G:

ZG
ϕf
(τ) =

∑
x∈KG

f \V̂ r−1
E

admissible

∑
y2∈Ex

∑
y1∈KG

f,x\x
⊥

admissible

ϕf (x, yi + y2)Z
G(y1)Kf,x

qT (x,y1+y2),

where KG
f,x is the stabilizer of x and let V̂E := VE ⊗ Af . Here, for the

notion of “admissible” and the definition of the special cycles ZG(x)Kf
,

see [9, Lemma 3.1], [10, Lemma 2.1], or [12, Lemma 2.1]. Let φ+(x) =
exp(−πTrT (x)) be the Gaussian. We extend the definition of Zϕf

(τ) for
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τ ∈ (Hr)
d to Zϕf

(g′) for g′ ∈ U(r, r)(AF ) defined by

ZG
ϕf
(g′) :=

∑
x∈G(Q)\V̂ r

E

∑
g∈Gx(Af )\G(Af )/K

G
f

ωA(g
′)(ϕf ⊗ φd

+)(g
−1x)ZG(x, g)KG

f

=
∑

x∈KG
f \V̂ r−1

E

admissible

∑
y2∈Ex

∑
y1∈KG

f,x\x
⊥

admissible

ωA(g
′)(ϕf⊗φd

+)(x, y1+y2)Z
G(y1)KG

f,x
.

Remark 4.2. The modularity of the generating series Zϕf
(τ) is equiva-

lent to the left U(r, r)(F )-invariance of the function Zϕf
(g′) on U(r, r)(A).

Hence, in the following, we prove the left U(r, r)-invariance of Zϕf
(g′).

First, we show the Pr-invariance of ZG
ϕf
(g′) for any r. Second, for r > 1,

we show the wr,r−1-invariance of Zϕf
(g′), assuming w1-invariance for r = 1.

Finally, we show that ZG
ϕf
(g′) is w1-invariant for r = 1.

4.2. Invariance under the parabolic subgroup Pr. The elements
m(a) and n(u) generate the parabolic subgroup Pr(F ) ⊂ U(r, r)(F ).

In the same way as in [9, Theorem 3.5(1)] or [10, Section 4.1], we can
show the following invariance under n(u)f and m(a)f :

ωf (n(u)fg
′
f )(ϕf ⊗ φd

+)(x)Z
G(x)KG

f
= ωf (g

′
f )(ϕf ⊗ φd

+)(x)Z
G(x)KG

f
,

ωf (m(a)fg
′
f )(ϕf ⊗ φd

+)(x)Z
G(x)KG

f
= ωf (g

′
f )(ϕf ⊗ φd

+)(xa)Z
G(x)KG

f
,

for any u ∈ Herr(F ) and a ∈ GLr(F ). The first equation shows the n(u)-
invariance of Zϕf

(g′). We shall prove that Zϕf
(g′) is m(a)-invariant as fol-

lows. We have U(x) = U(xa), so ZG
ϕf
(x) = ZG

ϕf
(xa). Therefore, combining

the above calculation and the fact that ZG
ϕf
(x) = ZG

ϕf
(xa), we conclude that

ZG
ϕf
(ωf (m(a))g′) =

∑
x∈KG

f \V̂ r
E

admissible

ωf (g
′
f )(ϕf ⊗ φd

+)(xa)Z
G(xa)KG

f

=
∑

x∈KG
f \V̂ r

E

admissible

ωf (g
′
f )(ϕf ⊗ φd

+)(x)Z
G(x)KG

f
= ZG

ϕf
(g′).

This shows that Zϕf
(g′) is invariant under the action of Pr.

4.3. Invariance under wr,r−1 for r > 1. For the following discussion,
we use the induction method of [9, proof of Theorem 3.5] and [12, Section
4.2]. Recall that

ZG
ϕf
(g′) =

∑
x∈KG

f \V̂ r−1
E

admissible

∑
y2∈Ex

∑
y1∈KG

f,x\x
⊥

admissible

ωA(g
′)(ϕf ⊗ φd

+)(x, y1 + y2)Z
G(y1)KG

f,x
.



16 Y. Maeda

Hence,

ZG
ϕf
(wr,r−1g

′) =∑
x∈KG

f \V̂ r−1
E

admissible

∑
y2∈Ex

∑
y1∈KG

f,x\x
⊥

admissible

ωA(wr,r−1)(ωA(g
′)(ϕf⊗φd

+))(x, y1+y2)Z
G(y1)KG

f,x
.

Now, from the definition of the Weil representation, we have

ωA(wr,r−1)(ϕf ⊗ φd
+)(x, y) = (ϕf ⊗ φd

+)
y(x, y),

where ϕy(x, y) is the partial Fourier transformation with respect to the sec-
ond coordinate. Applying this, we get

ZG
ϕf
(wr,r−1g

′)

=
∑

x∈KG
f \V̂ r−1

E

admissible

∑
y2∈Ex

∑
y1∈KG

f,x\x
⊥

admissible

(ωA(g
′)(ϕf ⊗ φd

+))
y1,y2(x, y1 + y2)Z

G(y1)KG
f,x
.

For fixed x, applying the r = 1 case (modularity of the generating series
constructed by special divisors) to the special divisors ZG(y1)KG

f,x
, we have∑

y1∈KG
f,x\x

⊥

admissible

ωA(g
′)(ϕf ⊗ φd

+)
y1,y2(x, y1 + y2)Z

G(y1)KG
f,x

=
∑

y1∈KG
f,x\x

⊥

admissible

ωA(g
′)(ϕf ⊗ φd

+)
y2(x, y1 + y2)Z

G(y1)KG
f,x
,

as a function of y2. Note that w1,0 = w1, and here we can use the w1-
modularity for r = 1. Thus,

ZG
ϕf
(wr,r−1g

′)

=
∑

x∈KG
f \V̂ r−1

E

admissible

∑
y2∈Ex

∑
y1∈KG

f,x\x
⊥

admissible

ωA(g
′)(ϕf ⊗ φd

+)
y2(x, y1 + y2)Z

G(y1)KG
f,x
.

Here, for fixed x and y2, by the Poisson summation formula for the function
ωA(g

′)(ϕf ⊗ φd
+)(x, y1 + y2) on y2 ∈ Ex ⊂ Ax, we have∑

y2∈Ex

ωA(g
′)(ϕf ⊗ φd

+)
y2(x, y1 + y2)Z

G(y1)KG
f,x

=
∑

y2∈Ex

ωA(g
′)(ϕf ⊗ φd

+)(x, y1 + y2)Z
G(y1)KG

f,x
.
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This leads to

ZG
ϕf
(wr,r−1g

′)

=
∑

x∈KG
f \V̂ r−1

E

admissible

∑
y2∈Ex

∑
y1∈KG

f,x\x
⊥

admissible

ωA(g
′)(ϕf ⊗ φd

+)(x, y1 + y2)Z
G(y1)KG

f,x
,

which coincides with the definition of ZG
ϕf
(g′). Therefore, we get

ZG
ϕf
(wr,r−1g

′) = ZG
ϕf
(g′).

This shows that Zϕf
(g′) is invariant under the action of wr,r−1.

4.4. Invariance under w1 for r = 1. We use Liu’s proof of [9, The-
orem 3.5]. Now, U(1) × U(1) is the maximal compact subgroup of U(1, 1),
and SL2(AF,f )(U(1)×U(1))(AF,f ) = U(1, 1)(AF,f ). Therefore, we reduce the
problem to proving that ZG

ϕf
(w1g

′) = ZG
ϕf
(g′) for all g′ ∈ SL2(AF ). By [9,

Corollary 3.4] and [9, proof of Lemma 3.6], it suffices to prove ZH
ϕf
(w1g

′) =

ZH
ϕf
(g′). However, this follows from [7] or [10] under the Beilinson–Bloch con-

jecture for orthogonal Shimura varieties. This finishes the proof of Theorem
4.1.
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Abstract (will appear on the journal’s web site only)
We study the modularity of the generating series of special cycles on

unitary Shimura varieties over CM-fields of degree 2d associated with a Her-
mitian form in n+ 1 variables whose signature is (n, 1) at e real places and
(n + 1, 0) at the remaining d − e real places for 1 ≤ e < d. For e = 1,
Liu proved the modularity, and Xia showed the absolute convergence of the
generating series. On the other hand, Bruinier constructed regularized theta
lifts on orthogonal groups over totally real fields and proved the modular-
ity of special divisors on orthogonal Shimura varieties. By using Bruinier’s
result, we work on the problem for e = 1 and give another proof of Liu’s
theorem [Algebra Number Theory 5 (2011)]. For e > 1, we prove that the
generating series of special cycles of codimension er in the Chow group is a
Hilbert-Hermitian modular form of weight n+ 1 and genus r, assuming the
Beilinson–Bloch conjecture for orthogonal Shimura varieties. Our result is a
generalization of Kudla’s modularity conjecture, solved by Liu uncondition-
ally when e = 1.
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