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͋Β͢͡

Riemann໘ͷมۭؒܗͰ͋Δ Teichmüllerۭؒ͸, ʹ੒͔Βࣗવߏ
Teichmüllerڑ཭ͱ͍͏׬උͳڑ཭വ਺Λ࣋ͭ. ༗ݩ࣍ݶ Teichmüllerۭؒ
͸, ͜ͷڑ཭ʹؔ͢Δଌ஍ઢ͸Ұҙతʹଘ͢ࡏΔ͜ͱ͕஌ΒΕ͍ͯΔ͕,
ແݩ࣍ݶͷ৔߹ʹ͸, Ұҙੑ͕੒ཱ͠ͳ͍ 2఺ͷ૊͕ଘ͢ࡏΔ͜ͱ͕஌Β
Ε͍ͯΔ ([L1], [Th], [L2]).
ଌ஍ઢΛߏ੒͢ΔͨΊʹॏཁʹͳͬͯ͘Δͷ͸, ஋ۃ Beltramiඍ෼Ͱ͋
Δ. ຊ࿦จͰ͸, Z ܕݶΛ࣋ͭղੳతແ༺࡞ Riemann໘ͷۃ஋Beltramiඍ
෼Ͱ͋ΔͨΊͷे෼৚݅ (ओ݁Ռ 1) Λड़΂Δ. ͦͷ͋ͱ, Z Λ࣋ͭղ༺࡞
ੳతແܕݶ Riemann໘ͷ Teichmüllerۭؒʹ͓͍ͯ, Ͱ஌ΒΕ͍ͯͳ·ࠓ
͔ͬͨଌ஍ઢͷߏ੒ํ๏ (ओ݁Ռ 2, ओ݁Ռ 3,ओ݁Ռ 4)ʹ͍ͭͯड़΂Δ.
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ฏ໘ٖ౳֯ࣸ૾

Def 1.1 ( ฏ໘্ͷٖ౳֯ࣸ૾ )

Ω ⊂ CΛ։ू߹ͱ͠, f : Ω → C Λ͖޲Λอͭத΁ͷಉ૬ࣸ૾ͱ͢Δ. ͜
ͷͱ͖, f ͕࣍ͷ৚݅ :

1 L2
loc ʹऑภಋؔ਺Λ࣋ͪ,

2 ∃k ∈ [0, 1) s.t. |fz| ≤ k|fz| a.e.

Λຬͨ͢ͱ͖, K := 1+k
1−k ͱͯ͠, K-ٖ౳֯ࣸ૾ ( K-qc ) ͱ͍͏. K Λ f

ͷ࠷େ࿪ۂ౓ͱ͍͍, K(f) ͱॻ͘.

Proposition 1.1

ฏ໘্ͷٖ౳֯ࣸ૾͸࣍Λຬͨ͢.

1 1-qc ͸౳֯ࣸ૾
2 {z | fz = 0} ͸, ྵू߹.

3 ྖҬ্ͷ qc͸ہॴҰ༷ Hölder࿈ଓੑΛຬͨ͢ (৿ͷఆཧ).
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ฏ໘ٖ౳֯ࣸ૾

Corollary 1.2 (([A], Chapter III, C, Theorem 2))

K > 1 ΛҰͭݻఆ͢Δ. ࣍ͷ଒ : {f : D → D | f ͸, K-qc, f(0) = 0} ͸
ਖ਼ن଒. ಛʹ఺ྻίϯύΫτ.

K-qc : f ʹରͯ͠, µf := fz
fz
͸, Մଌ, ‖µf‖∞ ≤ k := K−1

K+1 < 1 ͔ͭ,

fz = µffz

ͳΔ PDEΛຬͨ͢. µf Λ f ͷ Beltrami܎਺ͱ͍͏. ͜Εʹ͍ͭͯ, ͕࣍
஌ΒΕ͍ͯΔ.

Theorem 1.3 ( Measurable Riemann mapping Theorem)

C ্ͷ೚ҙͷՄଌࣸ૾ µͰ, ‖µ‖∞ < 1 Λຬͨ͢΋ͷʹରͯ͠, µ Λ
Beltrami܎਺ʹ΋ͭC ͔Β C ΁ͷٖ౳֯ࣸ૾͕ଘ͢ࡏΔ. ಛʹ, 0, 1 ( ࣗ
ಈతʹ ∞ ΋ ) Λݻఆ͢Δͱ͍͏৚݅ͰҰҙతʹܾ·Δ.

ҎޙͰ͸, Riemann໘ͷؒͷٖ౳֯ࣸ૾Λ༻͍Δ. Riemann໘ R1, R2 ͷ
ؒͷಉ૬ࣸ૾ f : R1 → R2 ͕ٖ౳֯ࣸ૾Ͱ͋Δͱ͸, ඪΛհٖ͢౳࠲ॴہ
֯ࣸ૾Ͱ͋ͬͯ, R1 ্શମͰҰ༷ʹ࿪ۂ౓͕཈͑ΒΕ͍ͯΔͱ͖Λ͍͏.
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Teichmüller Theory

R Λ૒ܕۂ Riemann໘, ීวඃ෴Λ H ͱ͠, ͦͷ Fuchs܈Λ Γ ͱ͢Δ.

L∞(Γ) :=

{
µ ∈ L∞(H)

∣∣∣∣µ(Az)
A′z

A′z
= µ(z) (∀A ∈ Γ)

}

A(Γ) := {ϕ | ϕ ͸, H ্ͷ Γ ʹؔ͢Δਖ਼ଇೋ࣍ඍ෼ ,

‖ϕ‖A(Γ) :=

∫∫

H/Γ
|ϕ| dxdy < ∞

}

ͱ͓͘. ·ͨ, Bel(Γ) := {µ ∈ L∞(Γ) | ‖µ‖∞ < 1} ͱ͓͘.֤ µ ∈ Bel(Γ)
ʹରͯ͠, Beltramiํఔࣜͷඪ४ղͰ͋Δ H ͷٖࣗݾ౳֯ࣸ૾Ͱ 0, 1,∞
Λݻఆ͢Δ΋ͷΛ wµ ͱॻ͘͜ͱͱ͢Δ.

Def 2.1

µ, ν ∈ Bel(Γ) ͕ Circle - equivalentͰ͋Δͱ͸,

wµ = wν on R̂

ͱఆΊ, Teich(Γ) := Bel(Γ)/Circle – equivalence ͱఆΊΔ.
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Teichmüller Theory

Rem

্ͷ Teich(Γ) ͸࣍ͷํ๏Ͱ, Riemann໘ͷมܗͱݟ၏ͤΔ : µ ∈ Bel(Γ)
ʹରͯ͠,

Γµ := wµ ◦ Γ ◦ w−1
µ ⊂ PSL(2;R)

Λຬͨ͢. Αͬͯ, Γµ ͸ H ʹෆ࿈ଓʹ࠶ͼ࡞༻͢Δ͔Β, Rµ := H/Γµ ͸
ͼ࠶ Riemann໘ʹͳΔ. ·ͨ, wµ ͕༠ಋ͢Δࣸ૾ R → Rµ ͕ଘ͢ࡏΔ.
͜ͷํݟʹΑͬͯ, Teichmüllerۭؒ͸, Riemann໘ͷมۭؒܗͱݟ၏ͤΔ.
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Teichmüller Theory

Def 2.2 ( Teichmüller ཭ڑ )

Teich(Γ) ্ʹ,

dT ([µ], [ν]) :=
1

2
inf logK(wµ̃ ◦ w−1

ν̃ )

ͱ͓͘. ͜͜ʹ, inf ͸ µ̃ ∈ [µ], ν̃ ∈ [ν] શମͰͱΔ.

Theorem 2.1 ([G], 5.3)

dT ͸ Teich(Γ) ্Ͱ׬උͳڑ཭Ͱ͋Δ.

Theorem 2.2

Teich(Γ) ͸ෳૉߏ଄Λ࣋ͭ. ͭ·Γ, ෳૉଟ༷ମͰ͋Δ.
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Teichmüller Theory

Def 2.3 ( ஋తۃ Beltrami܎਺ )

µ ∈ Bel(Γ) ,஋తͰ͋Δͱ͸ۃ͕

∀ν ∈ [µ]ʹରͯ͠, ‖µ‖∞ ≤ ‖ν‖∞

Λຬͨ͢͜ͱΛ͍͏. ·ͨ, ͳ͠ࡏಉ஋ྨͷதʹҰ͔ͭ͠ଘ͕ݩ஋తͳۃ
͍ͱ͖, Ұҙۃ஋తͰ͋Δͱ͍͏.

Rem

µ .஋తͳͱ͖ۃ͕ dT ([0], [µ]) =
1
2 log

1+‖µ‖∞
1−‖µ‖∞ Ͱ༩͑ΒΕΔ.

Rem

೚ҙͷ [µ] ∈ Teich(Γ) ͸, .Λ࣋ͭݩ஋తͳۃ ν ∈ Bel(Γ) ʹରͯ͠,

{µ ∈ [ν] | wµ = wν on R̂ ‖µ‖∞ ≤ ‖ν‖∞}

Λ͑ߟΔͱ, ਖ਼ن଒ʹͳΔ. Αͬͯ, ϊϧϜ͕࠷খʹͳΔ͕ݩऔΕΔ.
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Teichmüller Theory

Theorem 2.3 ( The Hamilton–Krushkal condition )

µ ∈ Bel(Γ)͕ۃ஋తͰ͋ΔͨΊͷඞཁे෼৚݅͸,

‖µ‖∞ = sup

{
Re

∫∫

H/Γ
µϕ dxdy

∣∣∣∣∣ϕ ∈ A(Γ) ͔ͭ ‖ϕ‖A(Γ) = 1

}

Ͱ͋Δ. ͨͩ͠, A1(Γ) := {ϕ ∈ A(Γ) | ‖ϕ‖A(Γ) = 1}

Rem

µ Λۃ஋ Beltrami܎਺ͱ͢Δ. ͜ͷͱ͖, [0, 1] * t +→ [tµ] ∈ Teich(Γ) ͸
Teichmüllerڑ཭ʹؔͯ͠ଌ஍ઢΛ༩͑Δ.

্ͷఆཧ͔Β, ஋ۃ Beltrami܎਺ʹରͯ͠, ͋Δ A1(Γ) ্ͷྻ (ϕn) Ͱ,

lim
n→∞

Re

∫∫

ω
µϕn dxdy = ‖µ‖∞

Λຬͨ͢΋ͷ͕ଘ͢ࡏΔ. ͜ΕΛ, µ ͷ Hamiltonྻͱ͍͏.
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ओ݁Ռ

Theorem 3.1 (ओ݁Ռ 1)

R := H/Γ Λղੳతແܕݶ Riemann໘ͱ͠, ແݶ८ճ܈ 〈γ〉 ͕ෆ࿈ଓʹ
.Δͱ͢Δ͍ͯ͠༺࡞ µ ∈ Bel(Γ) ʹରͯ͠, ͕࣍੒ཱ͢ΔͳΒ͹, ஋తۃ
Ͱ͋Δ : ͋Δ ϕ ∈ A(R/〈γ〉) ͱ k ∈ [0, 1) ͕ଘ͠ࡏ,

(µ|ωn) ◦ γn
γ′n
γ′n

n→∞−→ k
|ϕ|
ϕ

(a.e.ω0)

ͨͩ͠, γn := γn , ຊྖҬج ω0, ωn := γn(ω0)ͱͨ͠.

ඃ෴ p : R̃ → R, ඃ෴ม܈׵ Γ, F ∈ A(R̃)ͱ͢Δ. ͜ͷͱ͖,

Θ(F ) :=
∑

B∈Γ
(F ◦B ·B′2)

Λ, Poincaré .਺ͱ͍͏ڃ ͜Ε͸, ,Ұ༷ʹઈରऩଋٛ͠޿ Γ ͷجຊྖҬ্
L1ऩଋ͢Δ. ·ͨ, Θ(F ) ∈ A(R)͔ͭ, શࣹ.
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ओ݁Ռ

proof

K(k) := [−k, k2] ∩ Z,K−(k) := [−k2, k] ∩ Z, Jjk = j +K−(k) ͱ͓͘.
ࣹӨ :p : R → R/〈γ〉 ͕ඃ෴ࣸ૾Ͱ͋Δ. ͦ͜Ͱ, ϕ̃ = p∗(ϕ) ͱ͓͘. ·
ͨ, Poincaréڃ਺ͷશࣹੑ͔Β, ͋Δ f ∈ A(R) ͕ଘͯ͠ࡏ, ϕ̃ = Θ(f) ͕
੒Γཱͭ. ͦ͜Ͱ,

Fk :=
∑

n∈K−(k)

f ◦ γn · (γ′n)2

ͱ͠,
ϕk := ‖Fk‖−1

R Fk

͕, µ ʹର͢Δ HamiltonྻͰ͋Δ͜ͱΛࣔͤ͹ྑ͍. ͜ͷͱ͖,

‖Fk‖R
#K−(k)

k→∞−→ 1

Ͱ͋Δ͜ͱ͕ॏཁͰ͋Δ.
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ओ݁Ռ

Teichmüller ۭؒͷଟ༷ମͱͯ͠ͷߏ଄

࣍ͷۭؒΛఆٛ͢Δ.

N(Γ) :=

{
µ ∈ L∞(Γ)

∣∣∣∣∣

∫∫

H/Γ
µϕ dxdy = 0(∀ϕ ∈ A(Γ))

}

Λແݶখ Trivial Beltrami ඍ෼ͷ੒ۭؒ͢ͱ͍͏.

Def 3.1 ( infinitesimal ͳ Trivial Beltramiඍ෼ )

ೋͭͷ Beltramiඍ෼ µ1, µ2 ∈ L∞(Γ) ʹରͯ͠, ೚ҙͷ ϕ ∈ A(Γ) ʹର
ͯ͠, ∫

H/Γ
(µ1 − µ2)ϕ = 0

Λຬͨ͢ͱ͖, infinitesimal ʹ Teichmüllerಉ஋Ͱ͋Δͱ͍͏. ҎԼͰ͸୯
ʹ infinitesimal ʹಉ஋ͱ͍͏.
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ओ݁Ռ

L∞(Γ)/N(Γ)͸, Teichmüllerۭؒͷݪ఺ʹ͓͚Δ઀ۭؒʹҰக͢Δ. ಛ
ʹ, ࣍ͷఆཧ͕੒Γཱͭ.

Theorem 3.2 ( Li ( [L2], 3, Theorem 3.3 ) )

஋తۃ Beltrami܎਺ µ1, µ2 ͸ Teichmüllerಉ஋Ͱ͋Δͱ͢Δ.
µ1 − µ2 0∈ N(Γ) ͳΒ͹, γj : [0, 1] * t +→ [tµj ] (j = 1, 2) ͸ [0], [µ] Λ݁Ϳ
ҟͳΔଌ஍ઢͰ͋Δ.

ͭ·Γ, ಉ͡ 2఺Λ݁Ϳଌ஍ઢ͕ҟͳΔͨΊͷे෼৚݅ͱͯ͠, ॳ଎౓͕
ҟͳ͍ͬͯΕ͹ྑ͍.
,Β͔࡯ߟͰͷ·ࠓ ࣍ͷΑ͏ͳۃ஋త Beltrami܎਺ͷ଒ {µc} Ͱ࣍Λຬͨ
͢΋ͷΛߏ੒͢Ε͹ྑ͍ :

1 c1, c2 ʹରͯ͠, µc1 ͱ µc2 ͸ Teichmüllerಉ஋
2 c1 0= c2 ͳΒ͹ µc1 ͱ µc2 ͸ infinitesimalʹಉ஋Ͱͳ͍.

ಛʹ, µ ∈ Bel(Γ) ΛҰͭݻఆ͠, ྖҬ U ⊂ H/Γ ্ͰͷΈ஋Λม͢ߋΔ͜
ͱͰ, ͜ΕΛ࣮͢ݱΔ.
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ओ݁Ռ

ଌ஍ઢͷߏ੒

Proposition 3.3

Bel(A1/e,1) ͷ଒Ͱ, ࣍Λຬͨ͢΋ͷ͕ଘ͢ࡏΔ :
D := {|Imz| < 1,Rez ≥ 0} Ͱܘ਺͚ͮΒΕͨ Beltrami܎਺ͷ଒
{νc | c ∈ D} ͕ଘͯ͠ࡏ,

1 c ʹରͯ͠, νc ͸ 0ͱ Teichmüllerಉ஋
2 c1 0= c2 ͳΒ͹ νc1 ͱ νc2 ͸ infinitesimalʹಉ஋Ͱͳ͍.
3 νc ͸ c ʹෳૉղੳతʹґଘ͢Δ
4 c ∈ R ͳΒ͹ |νc| ͸ఆ਺.

proof

c ∈ D ͱ͢Δ. ͜ͷͱ͖࣍ͷٖ౳֯ࣸ૾ͷ Beltrami܎਺ΛݟΕ͹ྑ͍.

fc(z) =

{
eic(− log(|z|)) 1

e < |z| ≤ 1√
e

e−ic · eic log(|z|) 1√
e
≤ |z| < 1.
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ओ݁Ռ

Theorem 3.4 ( ओ݁Ռ 2 )

Bel(D) ͷ଒Ͱ, ࣍Λຬͨ͢΋ͷ͕ଘ͢ࡏΔ : D := {|Imz| < 1,Rez ≥ 0}
Ͱܘ਺͚ͮΒΕͨ Beltrami܎਺ͷ଒ {νc | c ∈ D} ͕ଘͯ͠ࡏ,

1 c ʹରͯ͠, νc ͸ 0 ʹ Teichmüllerಉ஋
2 c1 0= c2 ͳΒ͹ νc1 ͱ νc2 ͕ infinitesimalʹಉ஋Ͱͳ͍.
3 νc ͸ c ʹෳૉղੳతʹґଘ͢Δ
4 c ∈ R ͳΒ͹ |νc| ͸ఆ਺.

্Ͱߏ੒ͨ͠ྫͱ߹Θͤͯ, U ⊂ R := H/Γ Λ ୯Ґԁ൫͔͖݀͋ԁ൫͔
ԁ؀ྖҬʹ౳֯ಉܕͰڥք͸׈Β͔ͳྖҬͱ͢Δ. ͜ͷͱ͖, ্Ͱಘͨ
Beltrami܎਺ͷ଒Λ࣍ͷํ๏Ͱ֦ு͢Δ͜ͱͰ݁ՌΛ͏Δ :

ι : Teich(U) * [ν] +→
[{

ν on U

µ on R \ U

]
∈ TeichCl(U)(R)

ͨͩ͠, µ ͸ R \ U ্Ͱ |µ| ͕ఆ஋ͳۃ஋త Beltrami܎਺.
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ओ݁Ռ

Theorem 3.5 ( ओ݁Ռ 3 )

R̄ Λ Riemann໘ͱ͠, α ∈ R̄ ʹऩଋ͢Δ఺ྻ {an} ΛҰͭݻఆ͢Δ. ͜ͷ
ͱ͖, R := R̄ \ ({an} ∪ {α}) ͱ͢Δ.
Rʹରͯ͠, ͋Δແݶ८ճ܈ 〈γ〉͕ෆ࿈ଓʹ࡞༻͍ͯ͠Δͱ͖. R ্ͷ
Beltrami܎਺ µͰ࣍Λຬͨ͢΋ͷ͕ଘ͢ࡏΔ :

1 µ ͸ۃ஋త
2 |µ| ͸ఆ਺
3 ͋Δۃ஋త Beltrami܎਺ͷ଒ {µc | c ∈ I ⊂ D} ͕ଘͯ͠ࡏ,

1 µ ΛؚΉ
2 ؚ·ΕΔ Beltrami܎਺͸ Teichmüller ಉ஋
3 µc ͸ c ʹෳૉղੳతʹґଘ͢Δ
4 c1 0= c2 ͳΒ͹ µc1 ͱ µc2 ͸ infinitesimalʹ Teichmüller ಉ஋Ͱͳ͍
5 ͋Δ U ⊂ R ͕ଘͯ͠ࡏ µc|R\U = µ|R\U , Cl(U) ∩ {an} 0= ∅

U ͸ D·ͨ͸ D∗ ·ͨ͸ ԁ؀ྖҬ Aͱ౳֯ಉܕʹͰ͖Δ.

ྫ͑͹, R := C \ Z
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ओ݁Ռ

Theorem 3.6 ( ओ݁Ռ 4 )

R̄ Λ Riemann໘ͱ͠, α ∈ R̄ ʹऩଋ͢Δ఺ྻ {an} ΛҰͭݻఆ͢Δ. ͜ͷ
ͱ͖, R := R̄ \ ({an} ∪ {α}) ͱ͢Δ. Rʹରͯ͠, Z͕ෆ࿈ଓʹ࡞༻ͯ͠
͍Δͱ͖. R ্ͷ Beltrami܎਺ µͰ࣍Λຬͨ͢΋ͷ͕ଘ͢ࡏΔ :

1 µ ͸ۃ஋త
2 |µ| ͸ఆ਺
3 [0] ͱ [µ] Λ݁Ϳ͋Δଌ஍ઢͷඇࣗ໌ͳ଒ {λc | c ∈ I ⊂ D} ͕ଘ͠ࡏ
ͯ, λc ͸ c ʹෳૉղੳతʹґଘ͢Δ.

Rem

͕࣍஌ΒΕ͍ͯΔ ( [L1], Theorem 3 / [EKK], 8, Theorem 6 ) :
µ ∈ Bel(Γ) Λۃ஋త ͔ͭ µ 0= 0 ͱ͢Δ. ࣍͸ಉ஋ :

1 µ ͕Ұҙۃ஋త͔ͭ |µ| = ‖µ‖∞ ( a.e.)

2 [0] ͱ [µ] Λ݁Ϳଌ஍ઢ͕ͨͩҰͭଘ͢ࡏΔ.

ͨͩ͠, ”Ұҙۃ஋తͳΒ͹ଌ஍ઢ͸Ұҙత”ʹ͍ͭͯ͸൓ྫ͕͋Δ.
([BLMM], Theorem 10)
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ಛʹ, C \ Z ,Δͱݶʹ ࣍ͷΑ͏ͳଌ஍ઢͷ଒͕ߏ੒Ͱ͖Δ.

Theorem 3.7

Ω := {(cj) ∈ l∞ | cj ∈ I}ͱ͓͘.

1 µ ͸ۃ஋త
2 |µ| ͸ఆ਺
3 [0] ͱ [µ] Λ݁Ϳ͋Δଌ஍ઢͷඇࣗ໌ͳ଒ {λ(cj) | (cj) ∈ Ω} ͕ଘ͠ࡏ
ͯ, λcj ͸ (cj) ʹ (l∞ͷҙຯͰ)ෳૉղੳతʹґଘ͢Δ.
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Teichmüllerۭؒͷߏ੒ (࣭ٙԠ౴༻)

R,Rj Λ૒ܕۂ Riemann໘ͱ͠, fj : R → Rj Λٖ౳֯ࣸ૾ͱ͢Δ (
j = 1, 2 ). ૊ (R1, f1), (R2, f2) ͕ Teichmüllerಉ஋Ͱ͋Δͱ͸, ͋Δ౳֯
ࣸ૾ c : R1 → R2 ͕ଘͯ͠ࡏ, c ◦ f1 ͱ f2 ͕ R ͷཧ૝ڥքΛݻఆͯ͠
HomotopͰ͋Δ͜ͱΛ͏ݴ.
R ͔ΒಘΒΕΔ૊શମΛ Teichmüllerಉ஋ͰׂۭͬͨؒΛ Teichmüllerۭ
ؒ T (R) ͱ͍͏. .཭Λ࣋ͭڑ੒ΑΓ࣍ͷߏ

dT ([S1, f1], [S2, f2]) :=
1

2
inf logK(f̃2 ◦ f̃−1

1 )

͜͜ʹ, f̃j ͸, (Sj , fj) ͱ (Sj , f̃j) ͕ಉ஋ͳൣғͰ inf ΛͱΔ. ͜ͷڑ཭
Λ, Teichmüllerڑ཭ͱ͍͏.
·ͨ, R ͔Β R ΁ͷٖࣗݾ౳֯ࣸ૾Ͱ͋ͬͯ, idR ͱ Teichmüllerಉ஋ͳ
΋ͷͷશମΛ D0(R) ͱ͔͘.

দా ྇ (Պڀݚ౎େֶେֶӃཧֶژ) 2022 ೥ 3 ݄ 26 ೔ 24 / 28



ओ݁Ռ

R ্ఆٛ͞Εٖͨ౳֯ࣸ૾ͷ Beltrami܎਺Λہॴ࠲ඪ͝ͱʹΛͱΔͱ,
࣍ͷۭؒΛಘΔ.

Def 3.2

R ͷہॴ࠲ඪ (U, z) ຖʹఆٛ͞ΕͨՄଌؔ਺ µz ͷ଒ µ = {µz}(U,z)Ͱ
͋ͬͯ, ࣍ͷ̎৚݅ :

µz dz̄

dz
= µζ dζ̄

dζ
, ‖µ‖∞ := ess supہॴ࠲ඪ (U,z)

p∈U
|µz(p)|

Λຬͨ͢΋ͷશମΛ L∞(R) ͱॻ͘͜ͱͱ͢Δ. ͨͩ͠, z, ζ ͸ہॴ࠲ඪ
Ͱ͋Δ. ·ͨ, Bel(R) := {µ ∈ L∞(R) | ‖µ‖∞ < 1} ͱ͓͘.

D0(R,σ)ͷ Bel(R) ΁ͷ࡞༻ΛҎԼͰఆΊΔ.

D0(R,σ)× Bel(R) * (h, µ) +→ h∗(µ) =
(fµ ◦ h)z̄
(fµ ◦ h)z

∈ Bel(R)
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Def 3.3

ಓۭؒΛTeich1(R)يΑΔʹ༺࡞܈ ͱ͓͘. ͭ·Γ, µ, ν ∈ Bel(R) ͕ಉ஋
Ͱ͋Δ͜ͱΛ, ͋Δ h ∈ D0(R) ͕ଘͯ͠ࡏ, h∗(µ) = ν Λຬͨ͢͜ͱͰఆ
ٛ͠, µ ∼D0(R) ν ͱॻ͘͜ͱʹ͢Δ. ·ͨ, 0 ∈ Bel(R) ͷيಓΛ Bel0(R)
ͱॻ͘͜ͱ͢Δ. ·ͨ, ͦͷݩΛ trivial ͳBeltrami܎਺ͱ͍͏͜ͱʹ͢Δ.

Proposition 3.8 ([G], 5.1, Propotition 1)

Teich(R),Teich1(R) ࣗવʹಉҰࢹͰ͖Δ.

Proposition 3.9 ([G], 5.2, Lemma 2)

Teich(Γ) := Bel(Γ)/Circle – equivalence ͱఆΊΔͱ, Teich(Γ) ͱ
Teich(R) ͸ࣗવʹಉҰࢹͰ͖Δ.

দా ྇ (Պڀݚ౎େֶେֶӃཧֶژ) 2022 ೥ 3 ݄ 26 ೔ 26 / 28



ओ݁Ռ

Teichmüllerۭؒͷଟ༷ମߏ଄ (࣭ٙԠ౴༻)

Def 3.4

B(Γ) :=
{
ϕ
∣∣H∗ ্ͷ Γ ʹؔ͢Δਖ਼ଇೋ࣍ඍ෼ ‖ϕ‖B(Γ) < ∞

}

ͱ͓͘. ͨͩ͠, H∗ ্ͷ PoincaréྔܭΛ ρ := |dz|
|2y| , ‖ϕ‖B(Γ) :=

∥∥ρ−2ϕ
∥∥
∞.

Theorem 3.10 ( Bers embedding ([G], 5.6, Theorem 4) )

Γ Λ Fuchs܈ͱ͢Δ. ͜ͷͱ͖, B : T (Γ) * [µ] +→ {wµ, z} ∈ B(Γ)͸Ұର
Ұਖ਼ଇࣸ૾Ͱ͋ͬͯ, ∆B(Γ)(0; 2) ⊂ B(T (Γ)) ⊂ Cl(∆B(Γ)(0; 6)) Ͱ͋Γ,

૾ͷ্΁ͷ૒ਖ਼ଇಉܕͰ͋Δ. ( ͨͩ͠, {f, z} := f ′′′

f ′ (z)− 3
2

(
f ′′

f ′ (z)
)2

. )

Proposition 3.11 (Teichmüller ͷఆཧ)

্ͷࣸ૾Λհͯ͠ TeichmüllerۭؒΛ࣮͢ݱΔͱ, L∞(Γ)/N(Γ) ͸ݪ఺ʹ
͓͚Δ઀ۭؒ T[0](Teich(Γ)) ʹಉҰ͞ࢹΕΔ.
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ͷల๬ޙࠓ 1(࣭ٙԠ౴༻)

[O]ͷແݶ८ճ܈Ͱͷ݁Ռ Lemma 2
ॏΈ͚ͮ !!

ඃ෴ม܈׵ͷҰൠԽ
""

ओ݁Ռ 1

ඃ෴ม܈׵ͷҰൠԽ
""

[O]ͷ༗ݶੜ੒ Able܈Ͱͷ݁Ռ , Theorem1’
ॏΈ͚ͮ !!

ඃ෴ม܈׵ͷҰൠԽ
""

???

ඃ෴ม܈׵ͷҰൠԽ
""

[Mc]ͷ Amenableͳ܈Ͱͷ݁Ռ
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