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ファイブレーション

▶ E，B: 圏
▶ p : E ! B: 関手
p : E ! Bがファイブレーションであるとは，

E u˜X X

B J pX

p

uX

u

任意の対象 J 2 B，X 2 E と射u : J ! pX に対して，ある
対象u˜X 2 E と射uX : u˜X ! X が存在して p(uX) = u
である．さらにuX は次の普遍性を持つ．

4 / 20



ファイブレーション

▶ E，B: 圏
▶ p : E ! B: 関手
p : E ! Bがファイブレーションであるとは，

E u˜X X

B J pX

p

uX

u

任意の対象 J 2 B，X 2 E と射u : J ! pX に対して，ある
対象u˜X 2 E と射uX : u˜X ! X が存在して p(uX) = u
である．さらにuX は次の普遍性を持つ．

4 / 20



ファイブレーション

▶ E，B: 圏
▶ p : E ! B: 関手
p : E ! Bがファイブレーションであるとは，

E u˜X X

B J pX

p

uX

u

任意の対象 J 2 B，X 2 E と射u : J ! pX に対して，ある
対象u˜X 2 E と射uX : u˜X ! X が存在して p(uX) = u
である．さらにuX は次の普遍性を持つ．

4 / 20



カルテシアン射の普遍性
uX は次の普遍性を持つ．

E Z

u˜X X

B pZ

J pX

p

h

g

uX

v

u‹v

u

任意のZ 2 E と g : Z ! X，v : pZ ! J に対して
p(g) = u ‹ vならば，p(h) = vを満たすh : Z ! u˜X が
一意的に存在する．このような普遍性を持つ射をカルテシアン
射と呼ぶ．
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ファイブレーションの気持ち
ファイブレーション p : E ! Bを以下のような気持ちで眺める．

▶ Bは基本的な構造の圏
▶ E はBにより細かな構造が付加された圏
▶ pはX 2 Eに対してそのベースの構造 pX 2 Bを抽出する
▶ u : J ! pX に対してu˜X 2 E は，uを E に持ち上げら
れるような最も弱い構造
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ファイブレーションの具体例：Pred! Set

Setを集合と写像の圏とする．圏Predを次で定める．
▶ 対象は組 (I; X)たち．ここで I 2 SetかつX „ I．
▶ 射 f : (J; Y )! (I; X)は写像 f : J ! Iであって Y の元
をX にうつすもの．

関手 p : Pred! Setを

(I; X) 7! I

f 7! f

と定める．このとき pはファイブレーションとなる．
u : J ! p(I; X)に対して

u˜(I; X) = (J; u`1(X)) = (J; fj 2 J j uj 2 Xg)

である．このことからu˜のことを逆像関手と呼ぶ．
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プログラム意味論
単なる文字列としてのプログラムに何らか意味を与えることで計
算の性質を研究する．
▶ 操作的意味論：プログラムをどう実行するかを指定する（=
簡約規則を与える）ことで意味を定める

▶ 表示的意味論：プログラムが何を表すかを指定する（=プロ
グラムの集合から数学的構造への割り当てを定める）ことで
意味を定める．

今回は表示的意味論，特にプログラムの意味を圏によって解釈す
る圏論的意味論について考える．
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型とプログラム
データの種類のことを型と呼ぶ．プログラムはデータを加工する
レシピである．一般に型がついたプログラムを以下のように書く．

x1 : fi1; : : : ; xn : fin ‘ M : fi

プログラムの例

Intを整数を表す型とする．
▶ x : Int; y : Int ‘ add(x; y) : Intは，Int型の変数 x，y
が与えられている状況で add(x; y)というプログラムは Int
型であることを主張している．

▶ x : Int ‘ –yInt:add(x; y) : Int! Int
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プログラムの解釈
プログラムに圏Setにおける解釈を与えたい．
▶ 型 fi にSetの対象，つまり集合 [[fi ]]を割り当てる．

[[Unit]] = f˜g
[[Int]] = N

[[fi1 ! fi2]] = [[fi2]]
[[fi1]]

▶ プログラム x1 : fi1; : : : ; xn : fin ‘ M : fi はSetにおけ
る射

[[M]] : [[fi1]]ˆ ´ ´ ´ ˆ [[fin]]! [[fi ]]

として解釈する．

ここではSetにおける解釈しか考えないが，一般には適当な構造
（カルテシアン閉，モノイダル閉など）を持つ圏でプログラムを解
釈できる．
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プログラムの解釈の例

▶ x : Int; y : Int ‘ add(x; y) : Intの解釈は
[[add(x; y)]] : Nˆ N! N

(m;n) 7! m+ n

▶ x : Int ‘ –yInt:add(x; y) : Int! Intの解釈は

[[–yInt:add(x; y)]] : N! NN

m 7! (n 7! m+ n)

12 / 20
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ファイブレーションの気持ち（改）
ファイブレーション p : E ! Bを以下のような気持ちで眺める．

▶ Bは基本的な構造の圏
▶ 型とプログラムが解釈される圏

▶ E はBにより細かな構造が付加された圏
▶ 型とプログラムの性質の圏

▶ pはX 2 Eに対してそのベースの構造 pX 2 Bを抽出する
▶ 性質を記述する領域の抽出

▶ u : J ! pX に対してu˜X 2 E は，uを E に持ち上げら
れるような最も弱い構造
▶ プログラムの最弱事前条件
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プログラムのファイブレーション意味論
プログラム x1 : fi1; : : : ; xn : fin ‘ M : fi に対して

x1 : fi1; : : : ; xn : fin fPg ‘ M : fifv:Qg

で「プログラム実行前に条件 P が満たされているとき，M を実
行した結果を vとすると，実行後に条件Qが成立する」ことを
表す．
これをファイブレーションを用いて以下のように表す．

E P Q

B [[fi1]]ˆ ´ ´ ´ ˆ [[fin]] [[fi ]]

p

[[M]]
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ファイブレーションを使ったプログラムの解釈の具体例
変数 xと yが x = 0かつ y = 2という条件を満たしているな
らば，プログラム add(x; y)を実行した結果の値は偶数である．

x : Int; y : Int fx = 0 ^ y = 2g
‘ add(x; y) : Int fv:v is eveng

この主張が正しいことは，プログラム add(x; y)のSetにおけ
る解釈がファイブレーション pに沿ってPredに持ち上がること
からわかる．

Pred (N2; f(0; 2)g) (N; fn j n is eveng)

Set N2 N

p

[[add(x;y)]]

16 / 20



ファイブレーションを使ったプログラムの解釈の具体例
変数 xと yが x = 0かつ y = 2という条件を満たしているな
らば，プログラム add(x; y)を実行した結果の値は偶数である．

x : Int; y : Int fx = 0 ^ y = 2g
‘ add(x; y) : Int fv:v is eveng

この主張が正しいことは，プログラム add(x; y)のSetにおけ
る解釈がファイブレーション pに沿ってPredに持ち上がること
からわかる．

Pred (N2; f(0; 2)g) (N; fn j n is eveng)

Set N2 N

p

[[add(x;y)]]

16 / 20



ファイブレーションを使ったプログラムの解釈の具体例
変数 xと yが x = 0かつ y = 2という条件を満たしているな
らば，プログラム add(x; y)を実行した結果の値は偶数である．

x : Int; y : Int fx = 0 ^ y = 2g
‘ add(x; y) : Int fv:v is eveng

この主張が正しいことは，プログラム add(x; y)のSetにおけ
る解釈がファイブレーション pに沿ってPredに持ち上がること
からわかる．

Pred (N2; f(0; 2)g) (N; fn j n is eveng)

Set N2 N

p

[[add(x;y)]]

16 / 20



逆像関手の役割
ファイブレーションの定義に，u : J ! pX に対して
uX : u˜X ! X があってカルテシアン射となる，というもの
があった．

E u˜X X

B J pX

p

uX

u

プログラムのファイブレーション意味論の文脈では，u˜X はプ
ログラムの最弱事前条件に対応している．

E [[M]]˜Q Q

B [[`]] [[fi ]]

p

[[M]]Q

[[M]]
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逆像関手の役割を具体例で観察
W に入る最も弱い条件は何か．

x : Int; y : Int fWg ‘ add(x; y) : Int fv:v is eveng

「最も弱い」というのは

x : Int; y : Int fPg ‘ add(x; y) : Int fv:v is eveng

を満たす任意の条件 P に対して P ) W が成り立つこと．

(N2; P )

Pred (N2;W ) (N; fn j n is eveng)

Set N2 N

p

[[add(x;y)]]

これはW が逆像の普遍性を持つということを言っている．
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具体的な計算

x : Int; y : Int fWg ‘ add(x; y) : Int fv:v is eveng

fv:v is evengに対するプログラム add(x; y)の最弱事前条件
W は，

[[add(x; y)]]˜(N; fn j n is eveng)
= (N2; [[add(x; y)]]`1fn j n is eveng)
= (N2; f(x; y) j x+ y is eveng)

より「x+ y is even」である．

x : Int; y : Int fx = 0 ^ y = 2g
‘ add(x; y) : Int fv:v is eveng

も成り立っていたが，このとき

x = 0 ^ y = 2) x+ y is even

が成り立っている．
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最近考えていること
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